Real-time In Vivo Recording of Arabidopsis Calcium Signals During Insect Feeding Using a Fluorescent Biosensor
نویسندگان
چکیده
Calcium ions are predicted to be key signaling entities during biotic interactions, with calcium signaling forming an established part of the plant defense response to microbial elicitors and to wounding caused by chewing insects, eliciting systemic calcium signals in plants. However, the role of calcium in vivo during biotic stress is still unclear. This protocol describes the use of a genetically-encoded calcium sensor to detect calcium signals in plants during feeding by a hemipteran pest. Hemipterans such as aphids pierce a small number of cells with specialized, elongated sucking mouthparts, making them the ideal tool to study calcium dynamics when a plant is faced with a biotic stress, which is distinct from a wounding response. In addition, fluorescent biosensors are revolutionizing the measurement of signaling molecules in vivo in both animals and plants. Expressing a GFP-based calcium biosensor, GCaMP3, in the model plant Arabidopsis thaliana allows for the real-time imaging of plant calcium dynamics during insect feeding, with a high spatial and temporal resolution. A repeatable and robust assay has been developed using the fluorescence microscopy of detached GCaMP3 leaves, allowing for the continuous measurement of cytosolic calcium dynamics before, during, and after insect feeding. This reveals a highly-localized rapid calcium elevation around the aphid feeding site that occurs within a few minutes. The protocol can be adapted to other biotic stresses, such as additional insect species, while the use of Arabidopsis thaliana allows for the rapid generation of mutants to facilitate the molecular analysis of the phenomenon.
منابع مشابه
Biosensor Using a Genetically Encoded Calcium during the Early Phase of T Cell Activation Real-Time Analysis of Calcium Signals
متن کامل
Imaging endoplasmic reticulum calcium with a fluorescent biosensor in transgenic mice.
The use of biosynthetic fluorescent sensors is an important new approach for imaging Ca(2+) in cells. Genetically encoded indicators based on green fluorescent protein, calmodulin, and fluorescence resonance energy transfer (FRET) have been utilized to measure Ca(2+) in nonmammalian transgenic organisms and provide information about the organization and regulation of Ca(2+) signaling events in ...
متن کاملDifferential gene expression in response to mechanical wounding and insect feeding in Arabidopsis.
Wounding in multicellular eukaryotes results in marked changes in gene expression that contribute to tissue defense and repair. Using a cDNA microarray technique, we analyzed the timing, dynamics, and regulation of the expression of 150 genes in mechanically wounded leaves of Arabidopsis. Temporal accumulation of a group of transcripts was correlated with the appearance of oxylipin signals of t...
متن کاملThe molecular detection of the causative agent of plague on the basis of the pla gene
Yersinia pestis, a gram-negative rod belonging to the Enterobacteriaceae family, is the causative agent of plague. Classical methods of detecting the organisms are time-consuming, expensive and dangerous. The aim of the study was to design a Real-time PCR assay on the basis of the pla gene of Yersinia pestis. In this research the Real- time PCR test was optimized by using special primers for ta...
متن کاملA Model to Study the Phenotypic Changes of Insect Cell Transfection by Copepod Super Green Fluorescent Protein (cop-GFP) in Baculovirus Expression System
Background: Baculovirus expression system is one of the most attractive and powerful eukaryotic expression systems for the production of recombinant proteins. The presence of a biomarker is required to monitor transfection efficiency or protein expression levels in insect cells. Methods: The aim of this study was to construct a baculovirus expression vector encoding a copepod super green fluore...
متن کامل